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Mercury contamination occurs through a variety of natural and Q
anthropogenic sourcésand it causes serious environmental and Fo NN Q
health problems because marine aquatic organisms convert inorganic > D 'O
mercury into neurotoxic methylmercury which bioaccumulates Fe \N—N\
through the food chaih A number of selective HJ sensors have 1 2 Me

been devised using redéxhromogenid,or fluorogenié changes.

However, most of these molecules display shortcomings in practical The metal recognition properties df were evaluated by
use, such as cross-sensitivities toward other metal ions, delayedelectrochemical and optical analysis. The cyclic voltammetric (CV)
response to mercury ions, and/or low water solubility. Despite the and differential pulse voltammetric (DPV) analyses in acetonitrile
development of individual single-signaling sensors, there are no Show two almost-overlapped one-electron oxidation processes for

multichannel signaling receptors on Hgbinding. As a result, ~ 1, whereas in acetonitrile/water (7:3), only one oxidation peak
developing new and practical multi-signaling sensors fot*Hg around 0.65 V is observed, versus decamethylferrocene. Whereas
aqueous media is still a challenge. no perturbation of the DPV voltammogrambivas observed upon

For the selective recognition of soft heavy metal ions, nitrogen addition of Mg*, Ca*, Ni**, Zr**, and Cd* metal ionsi* a
binding sites might be a choice as it is well exemplified with class- Significant modification was observed upon addition ofHgn
ical azacrown ethefsPrevious studies on complexation of ferrocene acetonitrile, the two oxidation peaks were converted into one and
with binding ligands have shown that not only the characteristic @nodically shifted. Most remarkably is the fact that the selective
band between 400 and 500 nm, ascribed to the lowest energy metalf€sponse toward Hg is preserved in the presence of water. Thus,
to-ligand transition, is perturbed by complexation but also a positive the peak was also anodically shifted upon complexation in
shift of the F&/Fe!" redox couple is observéd®yrene has often been ~ acetonitrile/water (7:3) AEy, = 60 mV) (Figure 1a). The UV/
used as an effective fluorescence probe because of its high detectioiSible spectra of compound are almost identical in dichlo-
sensitivity? Formation of a complex results in a change in the fluo- romethane, acetonitrile, and acetonitrile/water (7:3). These spectra
rescence emission intensities of pyrene excimer and mon¥mer. are characterized by two maximum at 309 and 476 nm, which are
Two informative parameters associated with the pyrene excimer @ssigned to a localized—xz* excitation within the diaza-bridge
are the intensity ratio of the excimer to the monomer emisdign (  and a metal-to-ligand charge transfer, respectively.
Iv) and the wavelength corresponding to the maximum of the exci- 1 ne addition of increasing amounts of Hg(G)&Xo a solution of
mer emissionAg). While thelg/ly parameters are sensitive to the 1in acetonitrile/water (7:3) caused the appearance of a new band at
structure of the pyrene systems, the emissiois less variable and 4 = 521 nm and the disappearance of the initial band at 476 nm
locates at 475485 nm. On the basis of such precedents, suitable (Figure 1b). The three well-defined isosbestic points indicate that a
designed aza-substituted ferrocene and pyrene derivatives migh1€at interconversion between the uncomplexed and complexed species
be good candidates as dual signaling sensors. This can be realize@ccurs. The new band is red-shifted by 45 nm and is responsible
by combining the 2,3-diazabutadiene liggn@zine) with the redox  for the change of color from yellow (neutral azifjeto deep purple
activity of the ferrocene and the photoactivity of the pyrene. (complexed azine). This color change can be used for a “naked-eye”
Herein we report the synthesis, characterization, and metal recog-detection of H§" ions in an aqueous environment (Figure 1c), with
nition properties of 1,4-disubstituted 2,3-diaza-1,3-butadienes bear-2 detection limit of 5.2x 107 M. The absorption spectral data
ing two redox ferrocene groups, and one photoactive pyrene and indicate a 1:1 binding model and an association constant of 4.35
a_p-methoxyp_henyl g_roup2. These structural motifs would thus (), ,
yield a combined optical and redox, or fluorescent-based sensors,
in a single molecule. Symmetrical azihé€70% yield) was prepared

by known procedure®, while the unsymmetrical azin@ was R

obtained by a modification of the Zwierzak’s methigdhe X-ray 04

structure ofl reveals that the bridge is in tHgE form, and that 02

the dihedral angles between the bridged Cp ring of both Fe and It o

the C-C—N plane are—5.5 and 5.8, bearing a good electronic Tan 400 S0 G0 700 500 IS

conjugation along the bridge (see Supporting Information) Figure 1. (a) DPV of free ligandl (red) and after formation of-Hg?*

(blue) in CHCN/H0 7/3 with [(n-Bu)aN] CIO4 as supporting electrolyte.
t Universidad de Murcia. (b) Absorption spectra df in CH;CN/HO (7:3) upon_addition of increasing
*Institut de Ciecia dels Materials de Barcelona. amounts of Hg(CIG).. (c) Color change due to binding dfin CH;CN/H0O
8 Universita Innsbruck. (7:3) =1 x 104 M) with Hg?" in comparison with other metal cations.
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emission spectral data indicates a 1:1 binding model and an

@ () w association constant of 1.65 10° M~! in acetonitrile (see

&S00 200
1050 T Ht a5 Supporting Information). Compoun? was found to have high
400 4 selectivity toward Hg" ions and a detection linfit of 4.6 x 1076
200 200 M, which is sufficiently low to allow the fluorogenic detection of
0 o submillimolar concentrations of Hg. The fluorescence quantum
400 450 500 550 GO0 400 450 500 550 600 650 . .
Alnm Afnm yield was 10-fold @ = 0.04), and the ratidgusoylm@Eeo) = 13.

Figure 2. (a) Fluorescence emission spectr&dg@éxcitation at 350 nm) in : N[
CHCN/H;0 (7:3) upon titration with Hg(CIG». The final spectrum (red) | UOrescence spectra @frecorded in the presence of'LiNa",

corresponds to the complexed for2Hg?+ after addition of 1 equiv of K*, Mg*", Ca*, Cuw*, Zrer, CP*, Niz¥, SnP¥, EW', Yb*", and
Hg2*. (b) Fluorescence spectra after the addition of 1 equiv of Hg(zl0  Lu®* metal ions did not alter the shape or the intensity of the
to 2 in CHsCN/HO (7:3) (blue) and in CECN (green). Spectra for the  fluorescence spectra, indicating no interference.
free ligand2 in CHCN/HO (7:3) (deep blue) and GIEN (deep green). In summary, we have reported for the first time two new sensors
(Inset) From left to right:2 in CH3CN/H,O (7:3) and adding 1 equiv of . . .
Hg(CIO4)>, and2 in CHsCN and adding 1 equiv of Hg(CIgh. WhICh operate through two dlffe_rent chanr_u_él_s cﬁptlc/redox,_ qnd

2: optic/fluorescent) exhibiting higher sensitivity and selectivity for
Hg?" in aqueous environment than other previously reported
sensors, although they cannot operate in pure water as it does in
the seminal example of Lippard et®Remarkable is sensarsince
its optical change in sensing can be used for a naked-eye detection
of Hg?" ions, whereas its fluorescent response can be modulated
by varying the solvent polarity.

x 1P M~1in acetonitrile (see Supporting Information). This result
has also been confirmed by MALDI-TOF/MS, where a peak
corresponding to the 1:1 complex is observed (see Supporting
Information).

The ability of the azine bridge to complex Hgselectively was
checked with compoung, which has a fluorogenic instead of a re-
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